Targeting of cadherin-11 decreases skin fibrosis in the tight skin-1 mouse model

نویسندگان

  • Mesias Pedroza
  • Robert L Welschhans
  • Sandeep K Agarwal
چکیده

OBJECTIVE Systemic sclerosis (SSc) is an autoimmune disease clinically manifesting as progressive fibrosis of the skin and internal organs. Cadherin-11 (CDH11) expression is increased in fibrotic skin and lung tissue. Targeting CDH11 may be an effective approach to treating fibrosis. We hypothesize that targeting CDH11 will decrease fibrosis in the tight skin-1 (Tsk-1) mouse model. METHODS CDH11 expression was determined in the Tsk-1 mouse model using quantitative real time PCR and immunofluorescence (IF). Inhibitory anti- CDH11 monoclonal antibodies were tested in Tsk-1 mice for their ability to decrease hypodermal fibrosis. RESULTS Expression of CDH11 was increased in fibrotic skin from Tsk-1 mice compared to pallid controls. IF staining demonstrated that CDH11 expression localized to fibroblasts within the hypodermis of fibrotic skin. Treatment with inhibitory anti-CDH11 monoclonal antibodies decreased hypodermal thickness and fibrotic mediators in Tsk-1 mice compared to control antibodies. CONCLUSIONS These data demonstrate an important role for CDH11 in the development of skin fibrosis in Tsk-1 mice. These data add to the growing evidence for the important role of CDH11 in tissue fibrosis and fibrotic disease such as systemic sclerosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting IL-6 by both passive or active immunization strategies prevents bleomycin-induced skin fibrosis

INTRODUCTION Interleukin-6 (IL-6) is a pleiotropic cytokine for which preliminary data have suggested that it might contribute to systemic sclerosis (SSc). Our aims were to investigate, firstly, IL-6 expression in patients with SSc and, secondly, the efficacy of both passive and active immunization against IL-6 to reduce skin fibrosis in complementary mouse models of SSc. METHODS Human serum ...

متن کامل

Collagen Content in Skin and Internal Organs of the Tight Skin Mouse: An Animal Model of Scleroderma

The Tight Skin mouse is a genetically induced animal model of tissue fibrosis caused by a large in-frame mutation in the gene encoding fibrillin-1 (Fbn-1). We examined the influence of gender on the collagen content of tissues in C57BL/6J wild type (+/+) and mutant Tight Skin (Tsk/+) mice employing hydroxyproline assays. Tissue sections were stained with Masson's trichrome to identify collagen ...

متن کامل

Angiotensin II induces skin fibrosis: a novel mouse model of dermal fibrosis

INTRODUCTION Systemic sclerosis (SSc) is an autoimmune inflammatory disorder of unknown etiology characterized by fibrosis of the skin and internal organs. Ang II (angiotensin II), a vasoconstrictive peptide, is a well-known inducer of kidney, heart, and liver fibrosis. The goal of this study was to investigate the profibrotic potential of Ang II in the mouse skin. METHODS Ang II was administ...

متن کامل

Radiation-induced skin injury in the animal model of scleroderma: implications for post-radiotherapy fibrosis

BACKGROUND Radiation therapy is generally contraindicated for cancer patients with collagen vascular diseases (CVD) such as scleroderma due to an increased risk of fibrosis. The tight skin (TSK) mouse has skin which, in some respects, mimics that of patients with scleroderma. The skin radiation response of TSK mice has not been previously reported. If TSK mice are shown to have radiation sensit...

متن کامل

Increased dermal elastic fibers in the tight skin mouse.

OBJECTIVE The tight skin (Tsk-1) mouse has been proposed as a model for systemic sclerosis on the basis of increased accumulation of collagen and glycosaminoglycans in the skin, and by the presence of serum autoantibodies. The genetic basis of the mutation has been identified as a genomic duplication within the fibrillin-1 (Fbn-1) gene that results in a larger than normal Fbn-1 transcript, but ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017